Enzyme Architecture: Modeling the Operation of a Hydrophobic Clamp in Catalysis by Triosephosphate Isomerase
نویسندگان
چکیده
Triosephosphate isomerase (TIM) is a proficient catalyst of the reversible isomerization of dihydroxyacetone phosphate (DHAP) to d-glyceraldehyde phosphate (GAP), via general base catalysis by E165. Historically, this enzyme has been an extremely important model system for understanding the fundamentals of biological catalysis. TIM is activated through an energetically demanding conformational change, which helps position the side chains of two key hydrophobic residues (I170 and L230), over the carboxylate side chain of E165. This is critical both for creating a hydrophobic pocket for the catalytic base and for maintaining correct active site architecture. Truncation of these residues to alanine causes significant falloffs in TIM's catalytic activity, but experiments have failed to provide a full description of the action of this clamp in promoting substrate deprotonation. We perform here detailed empirical valence bond calculations of the TIM-catalyzed deprotonation of DHAP and GAP by both wild-type TIM and its I170A, L230A, and I170A/L230A mutants, obtaining exceptional quantitative agreement with experiment. Our calculations provide a linear free energy relationship, with slope 0.8, between the activation barriers and Gibbs free energies for these TIM-catalyzed reactions. We conclude that these clamping side chains minimize the Gibbs free energy for substrate deprotonation, and that the effects on reaction driving force are largely expressed at the transition state for proton transfer. Our combined analysis of previous experimental and current computational results allows us to provide an overview of the breakdown of ground-state and transition state effects in enzyme catalysis in unprecedented detail, providing a molecular description of the operation of a hydrophobic clamp in triosephosphate isomerase.
منابع مشابه
Structure–Function Studies of Hydrophobic Residues That Clamp a Basic Glutamate Side Chain during Catalysis by Triosephosphate Isomerase
Kinetic parameters are reported for the reactions of whole substrates (kcat/Km, M(-1) s(-1)) (R)-glyceraldehyde 3-phosphate (GAP) and dihydroxyacetone phosphate (DHAP) and for the substrate pieces [(kcat/Km)E·HPi/Kd, M(-2) s(-1)] glycolaldehyde (GA) and phosphite dianion (HPi) catalyzed by the I172A/L232A mutant of triosephosphate isomerase from Trypanosoma brucei brucei (TbbTIM). A comparison ...
متن کاملEnzyme relaxation in the reaction catalyzed by triosephosphate isomerase: detection and kinetic characterization of two unliganded forms of the enzyme.
Triosephosphate isomerase has been shown to exist in two unliganded forms, one of which binds and isomerizes (R)-glyceraldehyde 3-phosphate and the other of which binds and isomerizes dihydroxyacetone 3-phosphate. The tracer perturbation method of Britton demonstrates the kinetic significance of the interconversion of these two enzyme forms at high substrate concentrations and yields a rate con...
متن کاملThe adaptability of the active site of trypanosomal triosephosphate isomerase as observed in the crystal structures of three different complexes.
Crystals of triosephosphate isomerase from Trypanosoma brucei brucei have been used in binding studies with three competitive inhibitors of the enzyme's activity. Highly refined structures have been deduced for the complexes between trypanosomal triosephosphate isomerase and a substrate analogue (glycerol-3-phosphate to 2.2 A), a transition state analogue (3-phosphonopropionic acid to 2.6 A), a...
متن کاملTriosephosphate isomerase: a theoretical comparison of alternative pathways.
Three mechanisms proposed for the triosephosphate isomerase (TIM) catalyzed reactions were studied with the QM/MM approach using B3LYP/6-31+G(d,p) as the QM method. The two pathways that involve an enediol species were found to give similar values for the barriers and the calculated rates are in satisfactory agreement with experiment. By contrast, the mechanism that involves intramolecular prot...
متن کاملDesigning of Species-specific inhibition: The cysteine residues of triosephosphate isomerase
Enzymes from different species that have identical catalytic activities are usually very similar in their amino-acid sequences and three-dimensional structures. This is particularly true at the catalytic site, where the amino acids that form the active site and participate in catalysis are highly conserved. The similarities between homologous enzymes have hampered the design of species-specific...
متن کامل